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Abstract:  
Convolutional Neural Network (CNN) can detect images from cameras installed on self-driving cars. First, 

we drove a car on a simulator and recorded frames from three cameras: left, right, and center. These frames 

were recorded at the rate of 30 frames per second. Additional data recorded were the distribution of 

steering angles, average velocity, etc. were passed through a CNN to train a self-driving system. CNN is like 

the eyes and visual area in the brain, so CNN's achievements in autonomous vehicle control are somewhat 

limited. Therefore, this paper proposes the use of algorithms based on Deep Learning (DL) combined with 

reinforcement learning (RL) in the control of autonomous vehicles. We call this algorithm Deep 

Reinforcement Learning (DRL) which can send control commands to the vehicle to navigate properly and 

efficiently along a defined route. CNN tracks multiple objects while RL predicts the environment or assesses 

the current condition of the vehicle to make the safest decision. DRL-based algorithms have been used to 

solve Markov Decision Processes (MDPs), where the scope of the algorithm is to compute the optimal 

policy of an autonomous vehicle for choosing actions in an environment to maximize a reward function. 

Keywords: Convolutional Neural Network, self-driving cars, data processing. 

1. Introduction 

In recent years, the search for automatic guided vehicles (AGV) is becoming more and more 

prominent globally and locally in Vietnam; they are now being used extensively. Compares to 

traditional vehicles, AGVs bring various benefits. Using AGV lifts in delivering items, transferring 

between stages of an assembly line, and assembling and storing within a line to distinguish inbound and 

outbound items of a logistic chain can decrease the need for human intervention. Comparing the efficiency 

of an AGV robot that can work 24/7 (excluding charging time) on 3 shifts per day to that of a normal worker 

is an unfair comparison. No AGV will take “sick days” like humans unless it is completely disabled. Though 

AGVs require “rest” days for maintenance, those days are controlled by the vehicles’ manager. Not only 

efficiency is greater, but AGVs can also reduce training time, internships, overtime bonuses, health bonuses, 

insurance, and retirement bonus for companies. The cost of running AGVs only requires maintenance costs. 

An AGV that is trained and controlled by command lines or a future autonomous system will obey humans’ 

instructions exclusively. AGV lifters will know which location to go to, lifting and transferring items 

without the need for time to search and familiarize themselves. It will know when there are obstructions to 

send off a warning signal, how to avoid that obstacle, and how to return to its predetermined path. 

Autonomous vehicles will not fall into a “tired” state or be distracted by the environment; the vehicle, 

therefore, will not be driven off the predetermined path, minimizing risks to itself, the items carried, and 

even humans.  

In environments that have poor lighting or undesirable temperature, humidity, air quality, toxins, and 

working space, AGVs are an ideal replacement for human workers. AGVs are used in multiple workspaces, 

such as factories, assembly lines, logistic systems, hospitals, supermarkets, etc. 



Impact Factor 3.582   Case Studies Journal ISSN (2305-509X) – Volume 11, Issue 9–Sep-2022 

http://www.casestudiesjournal.com/  Page 55 

The technology used to control AGVs usually involves pre-programmed systems or recognizing simple 

images. In recent years, though, improvements made in Deep Learning along with advanced image and 

verbal processing allow neural systems to control the processes of pattern recognition, communication, and 

driving vehicles.  

Processing images and detecting obstacles, traffic lights and signs, and dangerous situations are the core 

features to develop autonomous vehicles. It is a necessity to have a fundamentally sound mathematical 

model to process data for controlling the vehicle. In this paper, we will use a newer recognition system – 

Convolutional Neural Network – to control autonomous vehicles. 

The efficiency of CNN when processing images is due to its adaptation and its 2-D network. CNN is 

inspired by the AI model and biological neural processes and is applied to a certain degree of success in 

recognizing models (LeCun et al.) [1] 

CNN is one of the advanced Deep Learning models. It enables the building of high-precision smart systems 

that is common nowadays. Like most feedforward neural networks (FNNs), CNN is trained as a version of a 

back-propagation algorithm, with ReLU as the activating function. We will discuss the architecture of the 

CNN based on the definition of convolution and feature mapping in later sections.   

CNN has changed pattern recognition. Before its widespread adoption, most recognition tasks were 

performed by extracting predetermined features, then passing through a classifier. A breakthrough feature of 

CNN is the ability to learn features automatically from examples [2].  CNN’s approach is more advanced 

than other systems because the convolutional network can recognize the 2D features of the image. 

Furthermore, by scanning the entire image using the convolutional layer, the number of parameters required 

is fewer than in most systems. While CNN’s features have been in use for more than twenty years [3], its 

adoption has only been on the rise in recent years due to the introduction of two features. First, large data 

sets e.g. the Large Scale Visual Recognition Challenge (ILSVRC) [4] have been providing data for system 

training and validation. Second, CNN’s algorithms are now performed by more advanced graphics 

processing units (GPUs) which accelerate learning and inference processes. 

Classic autonomous driving systems often use advanced sensors to perceive the environment and complex 

control algorithms to navigate safely in arbitrarily challenging situations. Typically, these frameworks use a 

modular architecture in which individual modules process information asynchronously. The perceptual layer 

captures information from surroundings using different sensors like cameras, LiDAR, RADAR, GNSS, 

IMU, and so on. Regarding the control layer, some of the most used control methods are the PID control 

method [9] and the quadratic Linear Regulator (LQR) algorithm [10]. 

However, despite their good performance, these controllers are often environment-dependent, so their 

respective hyperparameters must be appropriately tuned for each environment to obtain the expected 

behavior. 

CNN navigates autonomous vehicles by following and mimicking an expert's system decisions. In that 

sense, an expert system (usually a human) provides a set of driving data, which is used to train (dealer) 

driving policy through learning. The main advantage of this approach is simplicity, as it achieves very good 

results in end-to-end applications (navigation from a current location to target a certain location as quickly 

as possible to avoid collisions and departures on the road in an arbitrarily complex dynamic environment). 

Its main drawback, however, is the difficulty of imitating any potential driving scenes, and the inability to 

reproduce unlearned behaviors. This limitation makes this approach potentially dangerous in some real-life 

driving situations that have not been observed before. 

While reinforcement learning (RL) algorithms are learning dynamically with a trial and error method to 

maximize results, reward for a correct prediction, penalize for an incorrect prediction, and successfully 

tested to form the Markov Decision Process (MDP). The combination of Deep Learning techniques and 

Reinforcement Learning algorithms has proven capable of solving some of the most challenging tasks of 

autonomous driving. 

2. Convolutional Neural Network (CNN) 

CNNs are commonly used to detect objects in an image. This section will discuss the algorithms involved in 

detecting patterns. 
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The fundamental layers of a CNN are: 

2.1. The Convolutional layer 

This is the most important layer of a CNN; it performs mathematical operations. Key features of this 

layer are stride, padding, filter map, and feature map. 

 CNN applies a filter to regions of the image. These filter maps are 3D matrixes that consist of 

numbers known as parameters. 

 Stride is a parameter of the network that modifies how much movement should be performed on the 

image or video.   

 Padding is the  process of adding layers of zeroes to the input 

 A feature map is the result of each filter map scan over the input. Mathematical operations are 

performed after each scan.  

The convolutional layer can be considered as a sliding window on matrixes as described below.  

   

 
 

 

   

Figure 1. Convolutional layer to extract key features of an image 

(Source: https://nttuan8.com/bai-6-convolutional-neural-network/) 

Each convolutional layer contains a parameter known as a kernel that was trained to extract key 

features of an image without selection. In the example, the left triangular matrix was a black-and-white 

image that was digitalized. The dimension of the matrix was     and the intersection of every column and 

row has the value of   or  . 

Convolution is a     matrix. The sliding window (kernel, filter, or feature detect) is also a small 

matrix (in the example, it was a     matrix.). The convolved feature is the product of the filter matrix and 

the     matrix. 



Impact Factor 3.582   Case Studies Journal ISSN (2305-509X) – Volume 11, Issue 9–Sep-2022 

http://www.casestudiesjournal.com/  Page 57 

  

Figure 2. An image that has its feature extracted by a left triangular matrix 

  

 
 

Figure 3. The same image that has its feature extracted by a different left triangular matrix 

2.2.  Activating function (Rectifier layer) 

This layer is also known as the ReLU (Rectified Linear Unit) Layer. The purpose of this layer is to 

replicate the movement of electrical impulses of nerve cells through the axon. The activation layer consists 

of basic functions such as sigmoid, hyperbolic tangent (tanh), ReLU, Leaky ReLU, and Maxout. ReLU is 

the more common function; it is preferred over the other functions because it can perform calculations 

faster, making it more suitable for network training. When using ReLU, great care should be taken when 

altering the Learning Rate or observing the Dead Unit. This layer is used after the Filter Map was produced 

and the ReLU function was applied to all functions on the filter map. 

2.3. Pooling layer 

If the input is too large, the pooling layer will be placed between convolutional layers to decrease the 

parameter. There are two types of pooling layers: max pooling and average pooling 

If max pooling is used, the number of parameters decreases. Therefore, CNN will introduce multiple 

Filter Maps; each Filter Map will then produce a unique max pooling layer.  
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Figure 4. The pooling operation 

2.4. Fully connected layer 

This layer produces the result after the image was passed through the convolutional and pooling layer. 

The result is a model that can extract features of the image. To increase the number of outputs, the fully 

connected layer will then be used. Furthermore, if the fully connected layer retains the quality of the image, 

it will then pixelate that image. The layer will then select the best image from the pool of pixelated images. 

3. Mathematical model of a CNN 

The convolutional neural network is a feedforward neural network that has little weighting (weighting is 

near zero). With less weighting, the training process is streamlined and simpler than other fully connected 

networks. 

CNN has shown excellent efficiency when processing 2D images. In this scenario, the input image is an 

RGB-colored image that can be considered as a       tensor, where   is the number of rows and   is the 

number of columns. Three     channels correspond to the three primary colors. 

Each color channel can be expanded to the nuclear level. However, each three-color channel can be grouped 

into groups of three nuclei of the same type. In this situation, the convolution function is still the same. 

Kernels will “stack” onto the image at the coordinate        ; the sum of the products of each data input will 

then be obtained as the first output. Then, the nucleus will be shifted one unit in any direction to complete 

the process. 

Regarding a stationary nucleus, each object in the tensor      can be solved by inputting the latent variable 

    
   

, where                   and       (see figure 5.) A mapping for the  th layer and the  th 

channel with the corresponding      nucleus and the bias      can be calculated as: 

    
   

  (∑∑          
     

  

    
        ) 

where the activation function   (usually ReLU) is used to avoid gradient loss. 
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Figure 5. Objects of the tensor                  . The input     
   

 indicates the activation of 

coordinate       in the  th layer. 

The output can be written as a matrix          ,  

where   [
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4. Structure of a CNN 

CNN is a “stack” of convolution layers that uses non-linear functions such as ReLU or Hyperbolic tangent 

(    ) to activate the weighting of each node. After the activating function is applied to the layer, the output 

data will be more abstract for the next layer to process. In a feedforward neural network, the output of each 

node will then directly feed the next layer. These layers are known as the fully connected layers or affine 

layers. In a CNN, however, these layers are connected by convolution.  

The input of a layer is the convolved data from the previous layer; therefore, CNN is locally receptive. Each 

neuron of the next layer is the result of applying a filter on a local region of the previous neuron. Each layer 

consists of combinations of filters and their results. Moreover, other layers (such as the pooling layer or the 

subsampling layer) can be used to filter the data i.e. removing useless features)  

During the training period, CNN will automatically learn the parameters of any filter layer based on the task 

given. For example, when processing images, CNNs will automatically find the suitable parameter for each 

filter layer in the order of raw pixels, edges, shapes, facial, and high-level features. The final layer is used to 

process the image. 
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Figure 6. Diagram of a CNN 

(Source: https://nttuan8.com/bai-6-convolutional-neural-network/) 

The CNN model has two notable features: Location Invariance and Compositionality. The same object can 

be perceived differently if its projection was altered by translating, rotating, and scaling. The pooling layer 

will provide invariance in the degree of translation, rotation, and scaling. The compositionality of a CNN 

will then allow the data to be presented increasing in value and more abstract for the next convolution from 

the filter.  

 

Figure 7. A CNN for recognizing handwriting. 

(Source: https://nttuan8.com/bai-6-convolutional-neural-network/) 

5. Reinforcement learning  

Deep reinforcement learning combined with neural networks underpins a learning architecture that allows 

software-defined agents to learn the best possible actions in a virtual environment to achieve optimal goals. 

That is, it merges functional approximation and objective optimization, mapping state-action pairs with 

reward expectations. These algorithms consider the agent's behavior at the time of learning with his action 

reward structure, rewarding the agent when the chosen action is good, and penalizing otherwise. 
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5.1. Q-Learning  

The Q-Learning algorithm [11] generates an exact matrix so that the agent can maximize its reward in the 

long run. This approach is only practical for limited environments, with limited space for observations, since 

an increase in the number of states or actions causes an algorithm to misbehave. Q-Learning is a policy-free, 

model-free RL based on the Bellman Equation, where   refers to its optimal value: 

                           

E refers to the expectation, while   refers to the discount factor for the forward rewards, and rewrites it as Q-

value: 

                                                          

Where the optimal   value    can be expressed as follows: 

               m   
  

               

The objective of Q-Learning is to maximize the Q-value repeat policy, which corrects the loop between 

policy evaluation and policy improvement.  

5.2. Deep Q-Learning  

As we pointed out above, Q-learning lacks generality as the observation space increases. Imagine a situation 

with 10 possible states and 10 possible actions, we have a 10x10 matrix, but if the number of states increases 

to 1000, the Q matrix increases significantly, making it difficult to manage manually. To solve this problem, 

Deep Q-Learning (DQN) manages two-dimensional arrays by introducing Neural Networks. DQN estimates 

the Q-Value using it in a learning process, where the state is the input of the Network and the output is the 

corresponding Q-value for each action. The difference between D-Learning and Deep Q-Learning is 

represented in the equation of y: 

                      
       

where θ stands for the parameters in the Neural Network. 

6. Using CNNs and DRL for self-driving vehicles 

6.1. Formulating MDP 

In recent years, a large number of reinforcement learning algorithms have been developed to solve the 

Markov decision process (MDP). MDP is defined by a tuple          , where: 

 The state,   is the set of states that define the current status of the agent, 

 The action,   is the set of actions that the agent takes at the current instance, 

 The policy,   is how the agent process as the action is taking place. In practice, the policy can be 

regarded as a probability distribution. Therefore,            is the Markov transition 

probability matrix, 

 The reward function,  , assigns a score based on the state of the environment. Thus,    

               is the reward distribution.  

Taking any action     at any state    ,          determines the probability of the next state, and 

         is reward distribution. A function          maps every state     to a probability distribution 

       over  . 

For any Markov state   , the probability of the next state      (denoted   ) is dependent on the current state 

     , and independent of any past state. In mathematical terms,  

                          , 

where   is the state transition probability.  

Markov Process is a sequence of Markov states e.g.      . It is defined by      . Denoted as     , it is the 

probability of jumping from the current state   to the state   .                     . Therefore, the 

Markov Reward Process                 is the expected reward over any state possible. It is defined 

by          , where   is the discount factor. The Markov Decision Process is essentially Markov Reward 

Process with action, which is defined by            . The reward and the next state now depend on both 
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the current state and action, hence the notation 

  
                   . The cumulative reward is called the Return.  

The discount,  , is used to factor out the uncertainties regarding the future rewards and the contribution of 

future rewards to the Return.  

The policy,  , is the distribution of action at a known state. It is defined as the probability distribution over 

the set of actions   given the state  ;                      

Considering the general MDP explanation above, we use MDP to solve the autonomous navigation task, 

which involves an agent that observes the state    of the vehicle (the state of the environment) and generates 

an action   . This causes the car to transition to a new state     , generating a reward              based 

on the new observation. The Markov Decision Making Process is a process of             where the goal 

is to create a good product "Policy", that is, the function(s) that the decision maker will select when in state 

   

a) State space  : This term refers to the information received from the environment during each step of 

the algorithm. In our case, we model    as a tuple               where     is a vector visual feature 

associated with the image    or a set of visual features extracted from the figure image, usually a set of 

waypoints    obtained using the model-based path planner  
            .     is a driving feature vector consisting of an estimate of the number of vehicles with 

speed   , the distance to the center of the lane     , and the angle between the vehicle and the center of the 

lane                  

b) Action space  : To interact with the vehicle available in the simulator, commands for throttle, 

steering, and brakes must be provided continuously. The throttle and brake range are       and the driving 

range is       . Therefore, at each step, the DRL agent must publish an action  

    acct  steert  braket  with commands in their scope. 

c) The state transition function    is the probability that action   in state   at time   will lead to state 

     at time    :     rob             

d) Reward function              : This function generates an immediate reward when moving the 

agent from    to     . The goal in Markov's decision-making process is to generate a “ olicy”      when 

that would choose an action for a state. This function will maximize the expectation of future cumulative 

rewards  

  ∑           
 

 

   

 

6.2. CNN-DRL agent 

The next step is trying to obtain road features from a vehicle with a front-facing camera via CNN as shown 

in Figure 8, and from these features to determine the action taken by the vehicle according to the procedure 

end-to-end and in online mode. To do this, two parts are proposed to set the state vector  , the first part 

extracts the road features through the CNN, and the second part is formed by two identical Fully Connected 

layers used in the previous cases. 

An RGB image as shown in Figure 7, where the controllable region is marked, of size  
          is used as input to the CNN region. CNN consists of three complex layers with 64 pieces of 

size      ,      , and       respectively, using all of them RELU as activation function and followed 

by average polling layer. The output of this CNN is fattened and combined with the driving features and the 

whole state vector is used to provide 2-layers Fully Connected that decide the final action to be taken. 
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Figure 8. Combining CNN and reinforcement learning in autonomous vehicle navigation 

7. The experiment 

7.1. Procedure 

Three cameras were installed on the autonomous car to collect data. Along with the time-stamped 

video, the car’s telemetry, i.e. the steering command and brake/throttle inputs, were also collected. The 

steering command was collected via the Controller Area Network (CAN) and displayed in the form 
 

 
 (where 

  is the turning radius in meters). 
 

 
 was user over   to avoid singularity on a straight-line drive (the turning 

radius is now infinity). 
 

 
 smoothly transfer from zero to a positive value on a right turn and a negative value 

on a left turn.  

The training data consists of a frame taken from the video, combined with its corresponding driving 

command (
 

 
). Training the network solely on captured data is inadequate, though. The car needs to learn 

how to recover from its mistakes; otherwise, the car will slowly drift off the course. Therefore, the training 

data also contains images that have the car off-center from the lane and on the side of the road. 

 

Figure 9. Overview of the data collection system 

Images for off-center shifts can be obtained from the left and right cameras. Additional shifts between 

cameras can also be simulated by shifting the perspective of the nearest camera. Precision in this process 

requires 3D knowledge, which we don’t have. Therefore, we estimated the transformation by assuming that 

all points below the horizon are on the same surface and all points on the horizon are infinitely far away. 

This estimate works fine for flat terrains but will cause distortions to other objects e.g. parked cars, lamp 

posts, plants, and buildings. Fortunately, these distortions do not affect the training process. The transformed 
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image produced a drive command that would bring the car back to the preferred course in less than two 

seconds. 

A diagram of the training process is provided in figure 9. The image is fed to the CNN to calculate the 

steering angle. The computed angle is then compared to the required angle so that the weighting can be 

adjusted to have the output as close as possible to the requirement. The weighting adjustment is performed 

using back-propagation by the machine learning package.  

 

Figure 10. Network training 

After the training process, the network can use a single image from the camera. The process is 

illustrated in figure 11. 

 

Figure 11. The system used to compute steering commands from a center camera 

7.2. Results 

The training data was collected from a simulator with the camera running at 30 frames per second. We 

collected images from the left, right, and center cameras, steering angle, throttle, and brake. 

 

Figure 9. The collected data from approximately two minutes of driving 
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Figure 10. Frequency of the steering angles 

We trained the weight of the network to decrease inaccuracies between the computed steering angle and the 

human steering angle or the steering angle that was altered for the transformations. 

  

Figure 11. The original image (left) and the processed image (right) 

The total number of parameters in the model is estimated to be 252219; therefore, a significant amount 

of data is required to effectively train the network. 

 

Figure 12. The loss function after training 

After 30 epochs, the value of the loss function is near zero so the training process stopped. We have 

proven that DQN-CNN can recognize the entire road and lane without identifying markings, or signs, or 

using a pre-programmed route. DQN gets the best results as the number of sets increases, whereas DQN-

CNN gets the best models in the early sets and this is why the number of training sessions is larger in DQN. 

DQN needs more sets to train because its learning uses a decay parameter in the reward chain. 
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The figure below is a screen capture of the simulator that runs itself with the model stored in a *.h5 

file from training. The commands and vehicle’s velocity are on the left-hand side, while the vehicle driving 

is on the right. 

 

Figure 14. Simulation of the autonomous vehicle. 

8. Conclusion 

The results reported in this study show how the navigation pattern can be processed in autonomous vehicles 

using new techniques based on Deep Learning. The DQN-CNN is capable of achieving its goals by 

controlling the trajectory, and the driving is similar to that of a human driver as it exercises constant control 

over both speed and steering. We hope that our proposed architecture, based on the DRL control layer, will 

serve as a solid baseline in modern Autonomous technology Navigator tested in a simulated environment 

reality. 
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